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Abstract. In recent years, artificial intelligence (AI) aided communications grabbed huge attention by providing solutions for mathematical 

problems in wireless communications by using machine learning (ML) and deep learning (DL) algorithms. This paper initially presents a brief 

background on AI, CEM, and the role of AI/ML/DL in antennas. A study on ML/DL algorithms and the optimization techniques of antenna 

parameters using various ML/DL algorithms are presented. Finally, the application areas of AI in antennas are illustrated.  
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1. Introduction 

Artificial intelligence (AI) creates intelligent machines that 

simulate human thinking capability and behavior. Many 

advancements in AI communications stay at a theoretical 

level, and few of them are in hardware implementation. AI, 

ML and DL are the parts of computer science. These are the 

most trending technologies now a days to create intelligent 

systems. ML permits machines to learn from the data without 

precise programming, and it is the subset of AI. DL is the 

subset of ML which exposes multilayered neural networks to 

example data. DL is classified based on neural network usage 

as supervised, semi-supervised, unsupervised, or 

reinforcement.   

ML algorithms enable AI by artificial neural networks 

(ANNs). The ML success depends on the data's availability, 

quantity, and quality. Given antenna design, this data will be 

obtained by simulating the desired antenna on CEM 

simulation software tools. Then from the results, a dataset is 

created. Further, this dataset can be divided into three sets 

training, cross-validation, and testing. These sets are used to 

train and validate an ML model. Figure 1 shows the relation 

between AI, ML, and DL. 

2.  Background 

McCulloch and Pitts in 1943 introduced the first 

computational model of ANN. AI was introduced into 

academics in 1956 and saw progress in interest in the 1960s. 

In the 1970s, it was "AI winter" due to a lack of funding. AI 

progressed in the mid-1980s due to renewed ANNs and 

backpropagation [1]. Further, it continued in the 1990s and 

2000s due to applications like handwritten check signature 

detection. Further advancements were due to deep neural 

networks (DNNs).  

The “big bang” of DL took place in 2009 as NVIDIA 

GPUs are used to train DNNs for the first time. Then in 2012, 

the DL revolution began. After 2015, convolutional neural 

networks (CNNs) stood first by breaking the benchmark 

targeted by human experts. It is a remarkable advancement in 

AI as CNNs are better than humans in labeling images. In 

2016 AlphaGo system based on DNN beat a human Go 

championship. Since then, the "democratization of AI" has 

taken place. Now cloud computing technology-based 

companies use DL to improve their products and services.  

2.1. Computational Electromagnetics 

Computational Electromagnetics (CEM) is used to 

characterize the interaction of electromagnetic (EM) fields 

with antennas using Maxwell's equations. Initially, integral 

equations were used to solve linear antennas. Later on, due to 

the developments of computers, solving Maxwell's equations 

by both differential and integral solvers became easy. Then, 

the Method of Moments (MoM) was introduced to solve 

integral equations. Generally, memory and CPU usages are 

the main drawbacks for the differential and integral solvers. 

 

 
 

Fig. 1  Relationship between AI, ML, and DL 
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To fulfill the reduced memory demands, the fast integral 

solvers were implemented, which involved iterative methods 

[2]. Figure 2 shows the types of CEM methods. 

CEM methods in antenna design are numerical methods 

and high-frequency methods. The popular numerical methods 

in antenna simulations and testing are finite difference time 

domain (FDTD), MoM, and finite element method (FEM). By 

the physical optics (PO) method, the radiation fields of high-

frequency reflector antenna are obtained. Antenna 

simulations need solving partial differential equations (PDE), 

considering boundary conditions. High-frequency methods 

are field-based Geometric optics (GO) and current-based PO. 

Other methods are the multiple multipole program (MMP), 

generalized multipole technique (GTM), transmission line 

matrix method (TLM), and conjugate gradient method 

(CGM). The commercial CEM software tools are HFSS, CST, 

ADS, and IE3D. A few drawbacks of these tools are the 

execution time of CST and HFSS is more, and it is 

proportional to the size of the antenna, ADS does not model 

the 3D shapes, and IE3D cannot simulate shapes with finite 

details. 

2.2. Role of AI in antennas 

The hostile and crowded radio spectrum requires 

communications systems that reconfigure and adapt to the 

environment. Particularly reconfigurable and adaptive 

antenna arrays widely use AI. To change reconfigurable array 

polarization, radiation pattern, and operating frequency, the 

current distribution is altered across the aperture. The 

Adaptive arrays instantaneously weigh and combine signals 

to enhance the desired signal and reject interfering signals [3]. 

It changes antenna patterns by tuning the element weights and 

uses software beamforming algorithms. Recently, AI 

algorithms have upgraded with fast and superior methods to 

find element weights. 

 AI is better than traditional signal processing algorithms 

in noisy and multipath environments. AI depends on the 

architecture of the array and it controls signals by digital 

beamforming methods. 

2.3. Role of ML / DL in antennas 

ML in the field of antennas reduces the significant 

computational times of CEM techniques, especially in the 

optimization of designs with large shapes and more 

parameters. ANNs use high-performance computers to model 

EM structures with low computational resources, fewer 

degrees of errors and in less time. DL is widely used in the 

antenna research community for remote sensing and inverse 

scattering (IS) solutions [1]. To find the shape of a scattering 

structure, IS uses few receiving antennas. DeepNIS is a DNN 

for nonlinear EM IS, which uses a less number of receiving 

antennas. 

3. Review of ML/DL algorithms 

ML uses statistics, data searching, interpolation, and 

optimization for better decision-making. These approaches 

are [3]: 

− ANNs  

 
Fig. 2  CEM Techniques 

− Evaluating hypotheses  

− Decision tree learning 

− General to the specific ordering 

− Concept learning  

− Bayesian learning 

− DNNs 

− Instance-based learning  

− Computational learning theory 

− Combining inductive and analytical learning 

− Analytical learning 

− Support vector machines (SVMs) 

− Radial basis functions (RBFs) 

− Genetic algorithms (GAs) 

− Learning sets of rules 

− Reinforcement learning 

3.1. Categories of machine learning 

ML transfers the mathematical optimization problems to 

data-driven problems with less computational complexity. 

ML is broadly classified into three categories [4, 5]. They are, 

3.1.1. Supervised learning  

This learning task works on labeled input-output pairs to 

make predictions on unseen input. The training data is 

associated with targets or labels, whereas they are missing in 

testing data. The supervised learning is further classified as 

follows: 

3.1.1.1. Regression 

In this method, unseen data labels are predicted using 

available data. Regression algorithms are least absolute 

shrinkage and selection operator (LASSO), linear regression 

(LR), kernel ridge regression (KRR), and support vector 

regression (SVR). 

3.1.1.2. Classification  

In this method, data is labeled from a finite set of classes. 

This method includes binary classification and multi-class 

classification.  

3.1.2. Unsupervised learning 

This method predicts labels for new data based on the 

unlabeled datasets. Here there is no difference between 
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training and testing data. Unsupervised learning is further 

classified as follows. 

3.1.2.1. Clustering 

Clustering is used for large datasets. It identifies regions or 

groups within the datasets. 

3.1.2.2. Dimensionality reduction  

It is also called manifold learning. Here the dimensions of 

the data are reduced without compromising the main features 

of the initial data. 

3.1.3. Reinforcement learning 

Here the learner is an agent who interacts actively with the 

learning environment to aim for a common goal. This 

paradigm is used in optimization, cognitive sciences, and 

control theory. Markov decision processes (MDPs) are widely 

used in this field. Figure 3 shows types of ML. 

3.2. Artificial and deep neural networks 

Along with standard CEM methods, ANNs are used by 

FEM to minimize the energy function. MoM also uses ANNs 

because of their stability. ANNs find applications in 

distributed computing to solve complex EM problems. To 

speed up FDTD, ANNs were also used. Neural Networks or 

ANNs are designed to function like the human brain. It is 

made of many perceptron. 

3.2.1. Perceptron  

The artificial neuron or node has input and output. It is 

represented by the mathematical function. Generally, a 

biological neuron in ANN is called as a perceptron. It is a 

single-layer neural network. Figure 4 shows a model of the 

perceptron. Perceptron is represented mathematically as 

follows 

𝑦 =  ∑ 𝑤𝑖𝑥𝑖

n

𝑖 =0

 

3.2.2. ANNs 

The information that flows through the system affects the 

designed ANN because it learns and improves the property. 

Figure 5 shows the types of ANNs. ANN has three layers: the 

input, hidden, and output layers. Figure 6 shows the structure 

of ANN and DNN. 

3.2.3. DNNs 

DNNs belong to the ANN family. It consist of three or 

more hidden layers [7].  

3.3. Machine learning frameworks 

The ML frameworks were built on optimized codes 

written in Java, R, Python, etc., which offer fast and flexible 

usage of various algorithms [4]. Some of the frameworks are 

as follows.  

3.3.1. Regression models with learning algorithms 

These algorithms [7] helped in deriving the nonlinear 

relationship between the geometrical parameters and antenna 

characteristics. The popular ML algorithms used in antenna 

design are ANN, SVR, Gaussian Process Regression (GPR), 

LASSO, LR, Broad learning system (BLS), and KRR.  

 

Fig. 3  Classification of Machine Learning  
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Fig. 4  Perceptron model 

 

Fig. 5  Classification of ANNs 

 
Fig. 6  Structure of ANN and DNN 

3.3.2. Training ML models with optimization algorithms 

Optimization algorithms are used to find the bias 

parameters and optimal weight for the ML model. They are 

used in the training process of the ML models to find the 

optimized values of the parameters and to reduce the cost 

function. The optimizers in antenna design are as follows. 

3.3.2.1. Gradient descent (GD) 

GD updates the parameters after evaluating the gradient of 

the complete dataset hence GD algorithm/batch is slow. On a 

non-convex surface before converging to the global 

minimum, GD is stuck in local minima. Stochastic gradient 

descent (SGD) serves as an alternative for this. 

3.3.2.2. Adaptive moment estimation (ADAM) 

ADAM is a computationally efficient algorithm. Here for 

each parameter, the learning rates are computed. 

3.3.2.3. Levenberg Marquardt (LM) algorithm 

LM is used for nonlinear least-squares estimation problems 

with a local minimum of a function. It is a batch form trust-

region optimization. It combines GD and Gauss-Newton 

iterations; it is faster than vanilla GD. 

3.3.2.4. Bayesian regularization (BR) 

BR trains ANNs instead of error backpropagation over 

lengthy cross-validations. Bayesian regularized ANNs are 

difficult to overtrain and overfit. 

3.3.2.5. Evolutionary algorithms 

These are used in global optimization; they are inspired by 

the evolutionary process and behavior of living creatures. 

They include GAs, differential evolution (DE), particle 

swarm optimization (PSO), etc. and are used in 

electromagnetic optimization. 

3.3.3. Predicting antenna parameters with ML models 

Initially, the database is created by simulations. Then the 

dataset is classified as training, cross-validation, and test sets. 

An ML algorithm is selected to learn from the data. Predicting 

output values for desired inputs is done after training and 

testing the model. Predictions are made at high speeds with 

low error margins. The metrics to quantify errors are  

• Output error 

It is the difference between output obtained through 

simulations and output through predictions made by the ML 

model. It is formulated as  

𝑒𝑜 =  𝑦𝑑 − 𝑦𝑝 

where, 

𝑒𝑜  = Error in output  

𝑦𝑑 = Output desired 

𝑦𝑝  = Predicted output 

• Mean square error (MSE) 

𝑀𝑆𝐸 =  
1

N
∑ (𝑒𝑜)2

N

𝑖=1
 

Where, N =  Training sample size 

The error percentage is given by 

𝐸𝑟𝑟𝑜𝑟 % =  |
𝑦𝑑−𝑦𝑝

𝑦𝑑
| × 100 

4. Design and optimization of antennas using ML/DL 

algorithms 

Researchers used various ML algorithms to design 

antennas presented in Table 1. The resonance frequency (𝑓𝑟), 

permittivity, and height of the substrate are used as input 

parameters to obtain the dimensions of the rectangular 

microstrip patch antenna (RMPA) using multi-layer 

perceptron (MLP) and RBF [8]. The optimization of 

operational bandwidth, input impedance and 𝑓𝑟 of RMPA was 

done using SVR [9]. In [10], gain, 𝑓𝑟, and VSWR were 

obtained with the length and width of RMPA using SVR with 

a Gaussian Kernel. In [11], the slot size and position were 

predicted using SVR and ANN models. In [12], a printed 

antenna was designed based on the resilient backpropagation 

(RPROP) algorithm, feed-forward backpropagation (FFBP) 

algorithm, RBF, and LM algorithm. These were trained and 
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tested using MATLAB. Here, input parameters like patch 

dimensions, dielectric constant, and substrate thickness are 

taken to predict output parameters like 𝑓𝑟 of the antenna. In 

[13], ANN was used for designing a circular microstrip patch 

antenna (CMPA) to determine radius 'a', directivity, and feed 

position by an MLP model. In [14, 15], 𝑓𝑟 of CMPA was 

predicted based on the patch thickness, radius, and dielectric 

constant of the substrate. Figure 7 shows the structures of 

RMPA and CMPA. In [16], the feed gap of a circular 

monopole antenna was obtained to operate within a particular 

band of frequency, modeled by ANN. In [17], a two-slot 

RMPA was implemented using RBF and MLP based ANN 

models. In [18], a broadband mm-wave substrate integrated 

waveguide (SIW) cavity-backed slot antenna was 

implemented using the GPR algorithm. In [19, 20], Kriging 

Regression was used for reflector array antennas. 

Another side, some researchers focused on lodging ML 

models into optimization algorithms to improve the 

performance of an antenna, which leads to reduced simulation 

time. A comparison of antennas along with the used 

optimization and ML algorithms are presented (see Table 2). 

Table 1: Reported antennas with used ML algorithms 
 

Ref. Antenna Type 
ML 

algorithm 

[8, 12] RMPA ANN 

[9, 10] RMPA SVR 

[11] 
RMPA SVR, 

ANN 

[13-15] CMPA ANN 

[16] 
Monopole 

antenna 
ANN 

[17] two slot RMPA ANN 

[18] SIW GPR 

[19, 20] reflector array 
Kriging 

Regression 

 

 
                 (a)                                                     (b) 

        
                        (c)                                             (d) 

Fig. 7 (a), (b), (c), (d) Rectangular and circular patches with 

different feeds 

Table 2:  Reported antennas with both optimization and ML 

algorithms 

Ref. Antenna Type 
Optimization 

Algorithm 

ML 

Algorithm 

[21, 22] Slot Antenna Space mapping BSVR 

[23, 24] 
Ring monopole 

Antenna 
GA Interpolation 

[25] 
Inter chip 

Antenna 
SMA-DE GPR 

[26] 
E shaped 

antenna 
DE Kriging 

[27-30] 
Stacked patch 

Antenna 
PSO ANN 

5. Application areas of AI in antennas 

The application areas of AI in antennas are MIMO 

antenna selection for diversity purposes [31], Reconfigurable 

intelligent surfaces [32, 33], wireless localization, adaptive 

nulling, beamforming architectures, calibration, element 

failures, and multi-input and multi-output (MIMO) 

applications. These are discussed briefly as follows. 

5.1. Wireless localization 

In wireless localization, the positions of desired targets are 

investigated for navigation and tracking purposes. The most 

commonly used AI techniques are CNNs and SVMs for active 

localization, in which the target holds the device that sends a 

signal in some form. In a device-free localization, the target 

does not hold the device. 

5.2. Adaptive nulling 

In a cylindrical array, adaptive nulling identifies nulls in 

the pattern by using the least significant bits of the element 

weights while minimizing the total output power. An ML 

algorithm and DBF architecture are required to maximize the 

signal to interference ratio (SIR). This method not only 

reduces the cost function but also used in multipath and noisy 

environments. Adaptive nulling uses beamforming with an 

array of software-defined radios (SDRs) and Gas [34].  

5.3. Beamforming 

An active electronic scanning array (AESA) with an N-

element is good one for standard beamforming. It performs 

scanning of the main beam and reduces sidelobe levels. This 

technique limits the reconfigurable and adaptive functions 

and shows poor resolution over the digital beamforming 

(DBF) architecture replaces the software beamforming with 

RF beamforming in the computer. Now-a-days, SDRs are 

used in DBFs. This SDR performs cognitive sensing of the 

environment along with adaptive nulling. Figure 8 and 9 show 

SDR beamformer and its setup respectively.  

5.4. MIMO communications 

MIMO increases the overall capacity of a system. MIMO 

with DL algorithms are to exploit continuous aperture phased 

(CAP) MIMO transceivers and channel state information 

(CSI) estimation [35]. AI finds applications for analog, hybrid 

and digital beamforming in MIMO smart antenna arrays. 

Situational awareness strategy and ML techniques are 
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combined to learn information about the beam from previous 

observations and then reconfigure the array of antenna for 

mm-wave vehicular applications. Figure 10 shows the 

architecture of the CAP MIMO antenna. 

5.5. Element failure 

It is the degradation of performance but not a system 

failure. By reconfiguring the array beamforming network, the 

degraded performance is compensated. Here initially, the 

defective elements are identified. Some of the AI methods 

proposed for this task are SVM, GAs, NN; case-based 

reasoning (CBR). Here, even in the case of failure of one 

element, the radiation pattern of a tested antenna is the same 

as the reference one [36]. Figure 11 shows radiation 

characteristics of GA optimized array. 
 

 
 

Fig. 8  Block diagram of an SDR beamformer [34] 

 

 
 

Fig. 9  The setup of the 4-element SDR beamformer [34] 

 

 
 

Fig. 10  The architecture of CAP MIMO antenna [35] 

 
Fig. 11  Radiation characteristics of GA optimized array [36] 

5.6. Array Calibration 

In antenna arrays, calibration is required for the hardware 

to avoid deviations in the pattern. The time division duplexing 

allows massive MIMO to use the same channel for uplink and 

downlink. Reciprocity holds for the channel transfer function 

between the transmitter and receiver in both directions. 

Practically, variations in the phase and amplitude of RF 

chains will upset the reciprocity of two communicating 

devices, but customized ANNs overcome this issue. In a 

testing setup, a base station emulator connects with ports via 

physical cables for each antenna to the device under test 

(DUT). In a wireless method, the test signals are first sent over 

the air to the desired antenna port and then compensate for the 

transfer matrix (H) between the DUT and testing setup [37]. 

For a large number of antennas, the PSO provides a scaled 

solution. Figure 12 shows GA based system for array 

calibration. 

6. Conclusion 

AI has many applications in antennas. The significant 

contribution of AI is to tackle nonlinear and large problems 

with numerous variables. It is good to adapt to noisy and 

multipath environments. It is understood that ANNs and 

DNNs have played a significant role in the research area of 

ML/DL techniques over traditional CEM techniques. An 

ML/DL technique in complex antenna design CEM tools 

 

 

Fig. 12  GA based system for array calibration [37] 
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improves the performance characteristics and reduces 

computational time. This paper also provides the role of 

AI/ML/DL in antenna design and analysis. The comparative 

study of various research papers that have employed ML/DL 

algorithms for their design and optimization is also presented. 
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